






a C PFS (ssRNA target 1 with protospacer 14).
Mature LshC2c2 crRNAs contain a 28-nt DR and
a 28-nt spacer (fig. S1A) (19). We therefore gen-
erated an in vitro–transcribed crRNAwith a 28-nt
spacer complementary to protospacer 14 on ssRNA
target 1. LshC2c2 efficiently cleaved ssRNA in a
Mg2+- and crRNA-dependent manner (Fig. 2B
and fig. S9). We then annealed complementary
RNA oligos to regions flanking the crRNA target
site. This partially double-stranded RNA (dsRNA)
substrate was not cleaved by LshC2c2, which sug-
gests that it is specific for ssRNA (fig. S10, A and B).
We tested the sequence constraints of RNA

cleavage by LshC2c2 with additional crRNAs
complementary to ssRNA target 1 in which proto-
spacer 14 is preceded by each PFS variant. The
results of this experiment confirmed the prefer-
ence for C, A, and U PFSs, with little cleavage
activity detected for the G PFS target (Fig. 2C).
Additionally, we designed five crRNAs for each
possible PFS (20 total) across the ssRNA target
1 and evaluated cleavage activity for LshC2c2
pairedwith each of these crRNAs. As expected, we
observed less cleavage activity forGPFS–targeting
crRNAs as compared with other crRNAs tested
(Fig. 2D).
We then generated a dsDNA plasmid library

with protospacer 14 flanked by seven random
nucleotides so as to account for any PFS prefer-
ence. When incubated with LshC2c2 protein and
a crRNA complementary to protospacer 14, no
cleavage of the dsDNA plasmid library was ob-
served (fig. S10C). We also did not observe cleav-
age when targeting a ssDNA version of ssRNA
target 1 (fig. S10D). To rule out cotranscriptional
DNA cleavage, which has been observed in type
III CRISPR-Cas systems (22), we recapitulated
the E. coli RNA polymerase cotranscriptional
cleavage assay (fig. S11A) (22), expressing ssRNA
target 1 from a DNA substrate. This assay in-
volving purified LshC2c2 and crRNA targeting
ssRNA target 1 did not show any DNA cleavage
(fig. S11B). Together, these results indicate that
C2c2 cleaves specific ssRNA sites directed by the
target complementarity encoded in the crRNA,
with a H PFS preference.

C2c2 cleavage depends on local target
sequence and secondary structure

Given that C2c2 did not efficiently cleave dsRNA
substrates and that ssRNA can form complex
secondary structures, we reasoned that cleavage
by C2c2might be affected by secondary structure
of the ssRNA target. Indeed, after tiling ssRNA
target 1 with different crRNAs (Fig. 2D), we ob-
served the same cleavage pattern regardless of
the crRNA position along the target RNA. This
observation suggests that the crRNA-dependent
cleavage pattern was determined by features of
the target sequence rather than the distance
from the binding site. We hypothesized that the
LshC2c2-crRNA complex binds the target and
cleaves exposed regions of ssRNA within the sec-
ondary structure elements, with potential pref-
erence for certain nucleotides.
In agreement with this hypothesis, cleavage

of three ssRNA targets with different sequences
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Fig. 2. LshC2c2 and crRNA mediate RNA-guided ssRNA cleavage. (A) Schematic of the ssRNA sub-
strate being targeted by the crRNA.The protospacer region is highlighted in blue, and the PFS is indicated
by the magenta bar. (B) A denaturing gel demonstrating crRNA-mediated ssRNA cleavage by LshC2c2
after 1 hour of incubation. The ssRNA target is either 5′ labeled with IRDye 800 or 3′ labeled with Cy5.
Cleavage requires the presence of the crRNA and is abolished by addition of EDTA. Four cleavage sites are
observed. Reported band lengths arematched fromRNA sequencing. (C) A denaturing gel demonstrating
the requirement for an H PFS (not G) after 3 hours of incubation. Four ssRNA substrates that are identical
except for the PFS (indicated by the magenta “X” in the schematic) were used for the in vitro cleavage
reactions. ssRNA cleavage activity is dependent on the nucleotide immediately 3′ of the target site. Re-
ported band lengths are matched from RNA sequencing. (D) Schematic showing five protospacers for
each PFS on the ssRNA target (top). Denaturing gel showing crRNA-guided ssRNA cleavage activity after
1 hour of incubation. crRNAs correspond to protospacer numbering. Reported band lengths are matched
from RNA sequencing.
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flanking identical 28-nt protospacers resulted in
three distinct patterns of cleavage (Fig. 3A). RNA-
sequencing of the cleavage products for the three
targets revealed that cleavage sites mainly local-
ized to uracil-rich regions of ssRNA or ssRNA-
dsRNA junctions within the in silico–predicted
cofolds of the target sequence with the crRNA
(Fig. 3, B and C, and fig. S12, A to D). To test
whether the LshC2c2-crRNA complex prefers
cleavage at uracils, we analyzed the cleavage ef-
ficiencies of homopolymeric RNA targets (a 28-nt
protospacer extendedwith 120 As or Us regularly
interspaced by single bases of G or C to enable
oligo synthesis) and found that LshC2c2 prefer-
entially cleaved the uracil target compared with
adenine (fig. S12, E and F). We then tested cleav-
age of a modified version of ssRNA 4 that had its
main site of cleavage, a loop, replaced with each
of the four possible homopolymers and found
that cleavage only occurred at the uracil homo-
polymer loop (fig. S12G). To further test whether

cleavage was occurring at uracil residues, we
mutated single-uracil residues in ssRNA 1 that
showed cleavage in the RNA-sequencing (Fig. 3B)
to adenines. This experiment showed that by
mutating each uracil residue, we could modulate
the presence of a single cleavage band, which is
consistent with LshC2c2 cleaving at uracil resi-
dues in ssRNA regions (Fig. 3D).

The HEPN domains of C2c2 mediate
RNA-guided ssRNA-cleavage

Bioinformatic analysis of C2c2 has suggested
that the HEPN domains are likely to be respon-
sible for the observed catalytic activity (19). Each
of the two HEPN domains of C2c2 contains a
dyad of conserved arginine and histidine resi-
dues (Fig. 4A), which is in agreement with the
catalytic mechanism of the HEPN endoRNAse
(26–28). We mutated each of these putative cat-
alytic residues separately to alanine (R597A,
H602A, R1278A, H1283A) in the LshC2c2 locus

plasmids and assayed for MS2 interference. None
of the four mutant plasmids were able to protect
E. coli from phage infection (Fig. 4B and fig. S13).
(Single-letter abbreviations for the amino acid
residues are as follows: A, Ala; C, Cys; D, Asp; E,
Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu;M,
Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr;
V, Val; W, Trp; and Y, Tyr. In the mutants, other
amino acids were substituted at certain locations;
for example, R597A indicates that arginine at po-
sition 597 was replaced by alanine.)
We purified the four single-point mutant pro-

teins and assayed their ability to cleave 5′ end–
labeled ssRNA target 1 (Fig. 4C). In agreement
with our in vivo results, all four mutations abol-
ished cleavage activity. The inability of either of
the two wild-type HEPN domains to compensate
for inactivation of the other implies cooperation
between the twodomains. These results agreewith
observations that several bacterial and eukaryotic
single-HEPNproteins function as dimers (27, 28, 41).

aaf5573-4 5 AUGUST 2016 • VOL 353 ISSUE 6299 sciencemag.org SCIENCE

Fig. 3. C2c2 cleavage sites are
determined by secondary structure
and sequence of the target RNA.
(A) Denaturing gel showing C2c2-
crRNA–mediated cleavage after 3 hours
of incubation of three nonhomopoly-
meric ssRNA targets (1, 4, 5; black, blue,
and green, respectively, in Fig. 3, B and
C, and fig. S12, A to D) that share the
same protospacer but are flanked by
different sequences. Despite identical
protospacers, different flanking se-
quences resulted in different cleavage
patterns. Reported band lengths are
matched fromRNA sequencing. (B) The
cleavage sites of nonhomopolymer
ssRNA target 1 were mapped with RNA-
sequencing of the cleavage products.
The frequency of cleavage at each base
is colored according to the z-score and
shown on the predicted crRNA-ssRNA
cofold secondary structure. Fragments
used to generate the frequency analysis
contained the complete 5′ end.The 5′
and 3′ end of the ssRNA target are
indicated by blue and red outlines, on
the ssRNA and secondary structure,
respectively.The 5′ and 3′ end of the
spacer (outlined in yellow) is indicated
by the blue and orange residues high-
lighted, respectively.The crRNA nucleo-
tides are highlighted in orange. (C) Plot
of the frequencies of cleavage sites for
each position of ssRNA target 1 for all
reads that begin at the 5′ end.The
protospacer is indicated by the blue
highlighted region. (D) Schematic of a
modified ssRNA 1 target showing sites
(red) of single U-to-A flips (left).
Denaturing gel showing C2c2-crRNA–
mediated cleavage of each of these single
nucleotide variants after 3 hours of incu-
bation (right). Reported band lengths
are matched from RNA sequencing.
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Catalytically inactive variants of Cas9 retain
target DNA binding, allowing for the creation
of programmable DNA-binding proteins (12, 13).
Electrophoretic mobility shift assays (EMSAs) on
both the wild-type (Fig. 4D) and R1278A mutant
LshC2c2 (Fig. 4E) in complex with crRNA showed
the wild-type LshC2c2 complex binding strongly
[dissociation constant (Kd) ~ 46 nM] (fig. S14A)
and specifically to 5′ end–labeled ssRNA target
10 but not to the 5′ end–labeled nontarget ssRNA
(the reverse complement of ssRNA target 10).
The R1278A mutant C2c2 complex showed even
stronger (Kd ~ 7 nM) (fig. S14B) specific binding,
indicating that this HEPN mutation results in a
catalytically inactive, RNA-programmable, RNA-
binding protein. The LshC2c2 protein or crRNA
alone showed reduced levels of target affinity, as
expected (fig. S14, C to E). Additionally, no spe-
cific binding of LshC2c2-crRNA complex to ssDNA
was observed (fig. S15).
These results demonstrate that C2c2 cleaves

RNA via a catalytic mechanism distinct from
other known CRISPR-associated RNases. In par-
ticular, the type III Csm and Cmr multiprotein
complexes rely on acidic residues of RRM do-
mains for catalysis, whereas C2c2 achieves RNA
cleavage through the conserved basic residues of
its two HEPN domains.

Sequence and structural requirements
of C2c2 crRNA

Similar to the type V-A (Cpf1) systems (18), the
LshC2c2 crRNA contains a single stem loop in
the DR, suggesting that the secondary struc-
ture of the crRNA could facilitate interaction
with LshC2c2. We thus investigated the length
requirements of the spacer sequence for ssRNA
cleavage and found that LshC2c2 requires spacers
of at least 22 nt length to efficiently cleave ssRNA
target 1 (fig. S16A). The stem-loop structure of
the crRNA is also critical for ssRNA cleavage
because DR truncations that disturbed the stem
loop abrogated target cleavage (fig. S16B). Thus,
a DR longer than 24 nt is required to maintain
the stem loop necessary for LshC2c2 to mediate
ssRNA cleavage.
Single-base-pair inversions in the stem that

preserved the stem structure did not affect the
activity of the LshC2c2 complex. In contrast,
inverting all four G-C pairs in the stem elimi-
nated the cleavage, despite maintaining the dup-
lex structure (fig. S17A). Other perturbations, such
as those that introduced kinks and reduced or
increased base-pairing in the stem, also elim-
inated or drastically suppressed cleavage. This
suggests that the crRNA stem length is impor-
tant for complex formation and activity (fig. S17A).
We also found that loop deletions eliminated
cleavage, whereas insertions and substitutions
mostlymaintained some level of cleavage activity
(fig. S17B). In contrast, nearly all substitutions or
deletions in the region 3′ to the DR prevented
cleavage by LshC2c2 (fig. S18). Together, these
results demonstrate that LshC2c2 recognizes
structural characteristics of its cognate crRNA
but is amenable to loop insertions andmost tested
base substitutions outside of the 3′ DR region.
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These results have implications for the future
application of C2c2-based tools that require guide
engineering for recruitment of effectors or mod-
ulation of activity (42–44).

C2c2 cleavage is sensitive to double
mismatches in the crRNA-target duplex

We tested the sensitivity of the LshC2c2 system
to single mismatches between the crRNA guide
and target RNA by mutating single bases across
the spacer to the respective complementary bases
(for example, A to U). We then quantified plaque
formation with these mismatched spacers in the
MS2 infection assay and found that C2c2was fully
tolerant to single mismatches across the spacer
because suchmismatched spacers interfered with
phage propagation with similar efficiency as fully
matched spacers (figs. S19A and S20). However,

when we introduced consecutive double substi-
tutions in the spacer, we found a ~3-log10–fold
reduction in the protection for mismatches in
the center, but not at the 5′ or 3′ end, of the crRNA
(figs. S19B and S20). This observation suggests the
presence of a mismatch-sensitive “seed region” in
the center of the crRNA-target duplex.
We generated a set of in vitro–transcribed

crRNAs with mismatches similarly positioned
across the spacer region. When incubated with
LshC2c2 protein, all single mismatched crRNA
supported cleavage (fig. S19C), which is in agree-
ment with our in vivo findings.When testedwith
a set of consecutive and nonconsecutive double-
mutant crRNAs, LshC2c2 was unable to cleave
the target RNA if the mismatches were posi-
tioned in the center, but not at the 5′ or 3′ end of
the crRNA (figs. S19D and S21A), further sup-

porting the existence of a central seed region.
Additionally, no cleavage activity was observed
with crRNAs containing consecutive triple mis-
matches in the seed region (fig. S21B).

C2c2 can be reprogrammed to mediate
specific mRNA knockdown in vivo

Given the ability of C2c2 to cleave target ssRNA
in a crRNA sequence–specific manner, we tested
whether LshC2c2 could be reprogrammed to de-
grade selected nonphage ssRNA targets, and par-
ticularly mRNAs, in vivo. We cotransformed E.
coli with a plasmid encoding LshC2c2 and a
crRNA targeting the mRNA of red fluorescent
protein (RFP) as well as a compatible plasmid
expressing RFP (Fig. 5A). For optical density
(OD)–matched samples, we observed an ~20 to
92% decrease in RFP-positive cells for crRNAs
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Fig. 5. RFP mRNA knockdown by
retargeting LshC2c2. (A) Schematic
showing crRNA-guided knockdown
of RFP in E. coli heterologously
expressing the LshC2c2 locus. Three
RFP-targeting spacers were selected
for each non-G PFS, and each
protospacer on the RFP mRNA is
numbered. (B) RFP mRNA-targeting
spacers effected RFP knockdown,
whereas DNA-targeting spacers
(targeting the noncoding strand of
the RFP gene on the expression
plasmid, indicated as “rc” spacers) did
not affect RFP expression. (n = 3
biological replicates, ****P < 0.0001
compared with nontargeting guide by
means of ANOVA with multiple
hypothesis correction. Bars represent
mean ± SEM). (C) Quantification of
RFP knockdown in E. coli. Three
spacers each targeting C, U, or
A PFS-flanking protospacers [nine
spacers, numbered 5 to 13 as indi-
cated in (A)] in the RFP mRNA were
introduced, and RFP expression was
measured with flow cytometry. Each
point on the scatter plot represents
the average of three biological repli-
cates and corresponds to a single
spacer. Bars indicate the mean of
three spacers for each PFS, and
errors bars are shown as the SEM.
(D) Timeline of E. coli growth assay.
(E) Effect of RFP mRNA targeting on
the growth rate of E. coli transformed
with an inducible RFP expression
plasmid as well as the LshC2c2 locus
with nontargeting, RNA targeting
(spacer complementary to the RFP
mRNA or RFP gene coding strand),
and pACYC control plasmid at differ-
ent anhydrotetracycline (aTc)
concentrations.
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targeting protospacers flanked by C, A, or U PFSs
(Fig. 5, B and C). As a control, we tested crRNAs
containing reverse complements (targeting the
dsDNA plasmid) of the top performing RFP
mRNA-targeting spacers. As expected, we ob-
served no decrease in RFP fluorescence by these
crRNAs (Fig. 5B). We also confirmed that mu-
tation of the catalytic arginine residues in either
HEPN domain to alanine precluded RFP knock-
down (fig. S22). Thus, C2c2 is capable of gen-
eral retargeting to arbitrary ssRNA substrates,
governed exclusively by predictable nucleic-acid
interactions.
When we examined the growth of cells carry-

ing the RFP-targeting spacer with the greatest
level of RFP knockdown, we noted that the growth
rate of these bacteria was substantially reduced
(Fig. 5A, spacer 7). We investigated whether the
effect on growthwasmediated by theRFPmRNA–
targeting activity of LshC2c2 by introducing
an inducible-RFP plasmid and an RFP-targeting
LshC2c2 locus into E. coli. Upon induction of
RFP transcription, cells with RFP knockdown
showed substantial growth suppression not ob-
served in nontargeting controls (Fig. 5, D and
E). This growth restriction was dependent on
the level of the RFP mRNA, as controlled by the
concentration of the inducer anhydrotetracycline.
In contrast, in the absence of RFP transcription,
we did not observe any growth restriction, nor did
we observe any transcription-dependent DNA-
targeting in our biochemical experiment (fig.
S11). These results indicate that RNA-targeting
is likely the primary driver of this growth re-
striction phenotype. We therefore surmised that
in addition to the cleavage of the target RNA,

C2c2 CRISPR systems might prevent virus re-
production also via nonspecific cleavage of cel-
lular mRNAs, causing programmed cell death
(PCD) or dormancy (45, 46).

C2c2 cleaves collateral RNA in addition
to crRNA-targeted ssRNA

Cas9 and Cpf1 cleave DNA within the crRNA-
target heteroduplex at defined positions, re-
verting to an inactive state after cleavage. In
contrast, C2c2 cleaves the target RNA outside
of the crRNA binding site at varying distances
depending on the flanking sequence, presum-
ably within exposed ssRNA loop regions (Fig.
3, B and C, and fig. S12, A to D). This observed
flexibility with respect to the cleavage distance
led us to test whether cleavage of other, non-
target ssRNAs also occurs upon C2c2 target-
binding and activation. Under this model, the
C2c2-crRNA complex, once activated by binding
to its target RNA, cleaves the target RNA as well
as other RNAs nonspecifically. We carried out
in vitro cleavage reactions that included, in ad-
dition to LshC2c2 protein, crRNA and its target
RNA, one of four unrelated RNA molecules with-
out any complementarity to the crRNA guide
(Fig. 6A). These experiments showed that where-
as the LshC2c2-crRNA complex did not mediate
cleavage of any of the four collateral RNAs in the
absence of the target RNA, all four were effi-
ciently degraded in the presence of the target
RNA (Fig. 6B and fig. S23A). Furthermore, R597A
and R1278A HEPNmutants were unable to cleave
collateral RNA (fig. S23B).
To further investigate the collateral cleavage

and growth restriction in vivo, we hypothesized

that if a PFS preference screen for LshC2c2 was
performed in a transcribed region on the trans-
formed plasmid, thenwe should be able to detect
the PFS preference due to growth restriction
induced by RNA-targeting. We designed a pro-
tospacer site flanked by five randomized nucleo-
tides at the 3′ end in either a nontranscribed
region or in a region transcribed from the lac
promoter (fig. S24A). The analysis of the depleted
and enriched PFS sequences identified a H PFS
only in the assay with the transcribed sequence
but no discernable motif in the nontranscribed
sequence (fig. S24, B and C).
These results suggest aHEPN-dependentmech-

anism bywhich C2c2 in a complex with crRNA is
activated upon binding to target RNA and sub-
sequently cleaves nonspecifically other available
ssRNA targets. Such promiscuous RNA cleavage
could cause cellular toxicity, resulting in the ob-
served growth rate inhibition. These findings
imply that in addition to their likely role in direct
suppression of RNA viruses, type VI CRISPR-Cas
systems could function as mediators of a distinct
variety of PCD or dormancy induction that is
specifically triggered by cognate invader genomes
(Fig. 7). Under this scenario, dormancy would
slow the infection and supply additional time for
adaptive immunity. Such a mechanism agrees
with the previously proposed coupling of adapt-
ive immunity and PCD during the CRISPR-Cas
defensive response (47).

Conclusions

The class 2 type VI effector protein C2c2 is a
RNA-guided RNase that can be efficiently pro-
grammed to degrade any ssRNA by specifying
a 28-nt sequence on the crRNA (fig. S10). C2c2
cleaves RNA through conserved basic residues
within its two HEPN domains, in contrast to
the catalytic mechanisms of other known RNases
found in CRISPR-Cas systems (25, 48). Alanine
substitution of any of the four predicted HEPN
domain catalytic residues converted C2c2 into
an inactive programmable RNA-binding protein
(dC2c2, analogous to dCas9). Many different
spacer sequences work well in our assays, al-
though further screening will likely define prop-
erties and rules governing optimal function.
These results suggest a broad range of bio-

technology applications and research questions
(49–51). For example, the ability of dC2c2 to bind
to specified sequences could be used to (i) bring
effector modules to specific transcripts in order
to modulate their function or translation, which
could be used for large-scale screening, construc-
tion of synthetic regulatory circuits, and other
purposes; (ii) fluorescently tag specific RNAs in
order to visualize their trafficking and/or lo-
calization; (iii) alter RNA localization through
domains with affinity for specific subcellular
compartments; and (iv) capture specific tran-
scripts (through direct pull-down of dC2c2) in
order to enrich for proximal molecular part-
ners, including RNAs and proteins.
Active C2c2 also has many potential appli-

cations, such as targeting a specific transcript
for destruction, as performed here with RFP.

SCIENCE sciencemag.org 5 AUGUST 2016 • VOL 353 ISSUE 6299 aaf5573-7

A B

collateral
RNA

6 7 8 9 6 7 8 9 6 7 8 9

2targeted
ssRNA

2 2 2 3 3 3 3 – – – –

+LshC2c2/
crRNA

+ + + + + + + + + + +

targeted
ssRNA

collateral RNA

+ C2c2
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Fig. 6. crRNA-guided ssRNA cleavage activates nonspecific RNase activity of LshC2c2. (A) Sche-
matic of the biochemical assay used to detect crRNA-binding–activated nonspecific RNase activity on
non-crRNA–targeted collateral RNA molecules. The reaction consists of C2c2 protein, unlabeled
crRNA, unlabeled target ssRNA, and a second ssRNAwith 3′ fluorescent labeling and is incubated for
3 hours. C2c2-crRNA mediates cleavage of the unlabeled target ssRNA as well as the 3′ end–labeled
collateral RNA, which has no complementarity to the crRNA. (B) Denaturing gel showing nonspecific
RNase activity against nontargeted ssRNA substrates in the presence of target RNA after 3 hours of
incubation. The nontargeted ssRNA substrate is not cleaved in the absence of the crRNA-targeted
ssRNA substrate.
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In addition, C2c2, once primed by the cognate
target, can cleave other (noncomplementary)
RNA molecules in vitro and inhibit cell growth
in vivo. Biologically, this promiscuous RNase
activity might reflect a PCD/dormancy–based
protection mechanism of the type VI CRISPR-
Cas systems (Fig. 7). Technologically, it might
be used to trigger PCD or dormancy in specific
cells, such as cancer cells expressing a particular
transcript, neurons of a given class, or cells
infected by a specific pathogen.

Further experimental study is required to
elucidate the mechanisms by which the C2c2
system acquires spacers and the classes of path-
ogens against which it protects bacteria. The
presence of the conserved CRISPR adaptation
module consisting of typical Cas1 and Cas2 pro-
teins in the LshC2c2 locus suggests that it is
capable of spacer acquisition. Although C2c2
systems lack reverse transcriptases, which medi-
ate acquisition of RNA spacers in some type III
systems (52), it is possible that additional host or

viral factors could support RNA spacer acquisi-
tion. Additionally or alternatively, type VI sys-
tems could acquire DNA spacers similar to other
CRISPR-Cas variants but then target transcripts
of the respective DNA genomes, eliciting PCD
and abortive infection (Fig. 7).
The CRISPR-C2c2 system represent a distinct

evolutionary path among class 2 CRISPR-Cas
systems. It is likely that other, broadly analogous
class 2 RNA-targeting immune systems exist, and
further characterization of the diverse members
of class 2 systems will provide a deeper under-
standing of bacterial immunity and provide a
rich starting point for the development of pro-
grammable molecular tools for in vivo RNA
manipulation.

Materials and methods

Expanded materials and methods, including
computational analysis, can be found in sup-
plementary materials and methods.

Bacterial phage interference

The C2c2 CRISPR locus was amplified fromDNA
from Leptotrichia shahii DSM 19757 (ATCC,
Manassas, VA) and cloned for heterologous ex-
pression in E. coli. For screens, a library of all
possible spacers targeting the MS2 genome
were cloned into the spacer array; for individ-
ual spacers, single specific spacers were cloned
into the array. Interference screens were per-
formed in liquid culture and plated; surviving
colonies were harvested for DNA and spacer
representationwas determined by next-generation
sequencing. Individual spacers were tested by
spotting on top agar.

b–lactamase and transcribed/
non-transcribed PFS preference screens

Sequences with randomized nucleotides adja-
cent to protospacer 1 were cloned into pUC19 in
corresponding regions. Libraries were screened
by co-transformation with LshC2c2 locus plas-
mid or pACYC184 plasmid control, harvesting of
the surviving colonies, and next-generation se-
quencing of the resulting regions.

RFP-targeting assay

Cells containing anRFP expressing plasmidwere
transformedwith an LshC2c2 locus plasmidwith
corresponding spacers, grown overnight, and
analyzed for RFP fluorescence by flow cytom-
etry. The growth effects of LshC2c2 activity were
quantified by titrating inducible RFP levels with
dilutions of anhydrotetracycline inducer and
then measuring OD600.

in vitro nuclease and electrophoretic
mobility shift assays

LshC2c2 protein and HEPN mutants were puri-
fied for use in in vitro reactions; RNA were syn-
thesized via in vitro transcription. For nuclease
assays, protein was co-incubated with crRNA and
either 3′ or 5′-labeled targets and analyzed via
denaturing gel electrophoresis and imaging or
by next-generation sequencing. For electropho-
retic mobility shift assays, protein and nucleic
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C2c2 Cas1 Cas2generalized
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binding of target ssRNA activates
off-target cleavage of host RNAs
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cleavage of host RNAs induces
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Fig. 7. C2c2 as a putative RNA-targeting prokaryotic immune system. The C2c2-crRNA complex
recognizes target RNA via base pairing with the cognate protospacer and cleaves the target RNA. In
addition, binding of the target RNA by C2c2-crRNA activates a nonspecific RNase activity, which may
lead to promiscuous cleavage of RNAs without complementarity to the crRNA guide sequence. Through
this nonspecific RNase activity, C2c2 may also cause abortive infection via programmed cell death or
dormancy induction.
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acid were co-incubated and then resolved by gel
electrophoresis and imaging.
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